St-DRC: Stretchable DRAM Refresh Controller with No Parity-overhead Error Correction Scheme for Energy-efficient DNNs

Duy-Thanh Nguyen¹, Nhut-Minh Ho², Ik-Joon Chang¹

¹Kyung Hee University, Republic of Korea

²National University of Singapore, Singapore

Outline

- Motivation
 - The Effect of DRAM Refresh Relaxation
- Major Challenge
 - Floating-point IEEE754 under Retention Errors
 - Characteristic of DNN's Data
 - Large Sensitivity to Bit-errors of Some Exponent Bits
- Our Approach: Significant-Bit Protection
 - DRAM Controller with Stretchable Refresh Period
 - Validation
- Energy and Performance Simulation Results
- Conclusion

Motivation

- Large processing time for the training of DNNs
 - Training speed needs to be improved
- Hybrid CPU-GPU platform is widely used for training DNNs
 - Main Memory DRAM + GPU Memory DRAM → DRAM power is very significant

Nvidia Server	Main Memory (DDR4)	GPU Memory (HBM2)
DGX-1 (8X Tesla V-100)	512GB	32GB per GPU x 8 = 256GB
DGX-2 (16X Tesla V-100 /8X Tesla V-100)	1.5TB	32GB per GPU x 16 = 512GB/ 32GB per GPU x 8 = 256GB

• DNNs become deeper and wider

- The size of DNN Parameters tends to be larger
- DRAM size should be larger
- DRAM power would be more significant in data-center

The Effect of DRAM Refresh Relaxation

	RAIDR @ISCA12	REFLEX @ISCA15	Flikker @ASPLOS2011	Quality-aware DRAM @DATE2015
DRAM Power Saving Rate	16.1%	20%	25~32% (standby), 20~25%(overall)	73% (But some quality-loss)
System Performance Improvement Rate	8.1%	7~10%	Not discussed	Not discussed
Application	Generic	Generic	Video	Video
Precise/Approximate	Precise	Precise	Approximate	Approximate
Challenge	Retention time characterization of full rows for all chips (Large Verification Overhead)	Retention time characterization of full rows for all chips (Large Verification Overhead)	Not applicable to DNN (Large Accuracy Degradation)	1. Retention time characterization of full rows for all chips (Large Verification Overhead) 2. Not applicable to DNN (Large Accuracy Degradation)

> Our Contribution: Negligible accuracy degradation in DNN in spite of some retention errors, Reasonable verification effort, Significant power saving, System performance improvement

Floating point IEEE 754 under Retention Errors

■ Conversion $\{s,e,m\} \rightarrow \{-1^s \times M \times 2^{(e-Bias)} \mid Bias = 127 \text{ for FP32 or 15 for FP16, M = 1.m}\}$

Characteristic of DNNs' Data

5-bit

Large Sensitivity to Bit-errors of Some Exponent Bits (Inference)

Exponent bits are extremely sensitive to the error

Our Approach: Significant-Bit Protection

- Utilize some non-critical bits as parity bits for ECC
 - No additional memory overhead
- Protect some critical bits from retention errors
- Hamming codes for ECC
 - -Hamming(7,4): Case-1
 - -Hamming(15,11): Case-2 and Case-3

Data Mapping in Our Scheme

- Text, initialized data, environment, and stack sections are stored in the 'Error-free Zone'.
 - Prevent retention errors for control information
- Weight and activation parameters (significantly dominant in DNN) are stored in the 'Error Zone'.

DRAM Controller with Stretchable Refresh Period

We slightly modify the Memory Controller and the Physical DRAM Chip

DRAM Controller with Stretchable Refresh Period (Cont.)

DRAM Controller with Stretchable Refresh Period (Cont..)

Validation - Setup

- The working temperature is less than 60°C in the data-center (**)
 - BER ~ 10⁻⁻ at 60°C for two major vendors (DDR3)
 - Inject 10⁻⁷ BER to weights and activations during forward/backward phase
- (Forward time+ backward time)/iteration << 512ms (Measurement on Torch and Caffe)</p>
- JEDEC requires 10⁻¹⁵ BER @ 32/64ms in the normal working temperature

Validation (Cont.) – Training process

Works accurately and more efficiently than JEDEC standard, which is 10⁻¹⁵ BER

CNNs	Last Trained Epoch	Original Acc. Top-1	Case-1 Acc. Top-1	Case-2 Acc. Top-1	Case-3 Acc. Top-1
LeNet	10	99.07	99.12	99.06	99.02
ConvNet	10	75.69	74.66	76.56	75.83
SqueezeNet	7	58.50	58.83	58.34	58.21
GoogleNet	22	70.05	69.55	69.73	70.07

Validation (Cont..) - Inference

- We figure out the safe BER threshold for the inference of each DNN
 - → The Case-1 is a little robust than The Case-2
 - → The Case-3 is almost similar to the Case-2

Energy and Performance Simulation Results

- Back-propagation test results with different tRFC/tREFI (Benchmark Set: Rodinia from IISWC 2009)
 - Hybrid CPU-GPU Platform (GPGPU + GEM5)
 - Refresh time is 512ms (10⁻⁷ BER), DRAM energy reduces:
 - 23% on graphic memories
 - 12% on main memories
 - Performance improves 0.43~4.12%

Conclusion

- Present the stretchable DRAM Refresh controller to control the BER according to
 - -Temperature
 - -User desired BER
- The proposed Error Correction Schemes can safeguard the important bit
- With only 512ms (10⁻⁷ BER), our proposed system can potentially help:
 - -Speed up the training process up to 4.12%
 - -Reduce 12% and 23% DRAM energy in main and graphic memories

Acknowledgment & Thank you

 Supported by Samsung Research Funding & Incubation Center of Samsung Electronics under Project Number SRFC-IT1602-03

Any question?

