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Motivation — MSBs of DNN’s data are easily to get hurt

' DNNs become deeper and wider il A
— The size of DNN Parameters tends to be larger 821 s NASNef'f ........... SENet
— DRAM size should be larger i

— DRAM power would be more significant

.
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! Floating-points are still required for maintaining the DNN-training accuracy
—> Most significant bits are extremely sensitive to errors (St-DRC@DAC’2019)
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Motivation — DRAM refresh need to be eliminated

! DRAM refresh consumes up-to 47% DRAM energy *

—> DRAM refresh power is very significant

! DRAM refresh take up-to 46% DRAM performance*

—> The refresh overhead needs to be reduced, improving the system performance
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SOTA works on DRAM Refresh Relaxation of DNN

Approx.DRAM St-DRC PCM
@ISCAS18 @DAC19 @DATE?20
DRAM Power Saving 150 23% 2204
Rate
System Performance -10% 0.12~4% 504
Improvement Rate
Application DNNs DNNs DNNs
Precise/Approximate Approximate Approximate Approximate

Challenge

Change the cache
design. The huge
overhead for
multiple row
accesses

ECC overhead to
protect the
significant-bits

Change the cache
design. The huge
overhead for multiple
row accesses

|

> Our Contribution: Negligible accuracy degradation in DNN in spite of some retention errors,

Reasonable verification effort, Significant power saving, System performance improvement
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Floating point IEEE 754 under Retention Errors
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1 Conversion {s,e,m} — {-15xM x 2(¢-Bias)| Bias = 127 for FP32/BF16 or 15 for FP16, M = 1.m}

m

Significant Challenge Due to Retention Errors
Operandl »
i tInfinity/NaN
. NaN
When all 1’s are in the exponent, ’ (Not-A-Number)
the data will become *Infinity/NaN Operand?2 »

! Error propagation due to +/- Infinity and NaN — Catastrophic system errors
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50 times Error Accumulation 50 times Error Accumulation
(8 MSB: No Errors, Others: 10° BER) (All Bits: 10° BER)

[ =

! Exponent bits are extremely sensitive to the error
! Our approaches:
— No refresh for less-critical LSB’s of DNN data
* Reduce DRAM energy in DNN Training
— Critical MSB’s of DNN are normally refreshed, but hiding the performance overhead due to the refresh
sImprove system performance in DNN Training 8 /o
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! Place the important bits in Normally refresh DRAM chips

Our Approach: Data Mapping for Energy saving in DNNs

Normally
refresh
chip

No-refresh
chip
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Our Approach: Performance improvement in DNN-training

Bank #0
Bank #1

Conventional

Bank #0 READ
Proposed

<

Latency reduction

! To improve the performance - Hide the refresh overhead for the normally refreshed DRAM chips
—Per-bank refresh command is used.
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Some Constraints for Per-bank refresh

Constraint-1

Bank #0 ACT REFpb READ
Case-2
Clock ,'|‘I ) |
1 1 I
Bank #0 |
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Bank #0 m ;’.Eﬂ
CUUSI AcT  RERDN
\ \

a. Paralellizing bank restriction
! We put some constraints to prevent possible hazards due to per-bank refreshes

— Constraint-1: A bank under the per-bank refresh operation cannot be activated or accessed.

— Constraint-2: When a certain bank is under the per-bank refresh operation, another activated bank can

be accessed. However, except the per-bank refresh operations, other operations cannot be paralleled.
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DRAMA Memory Controller

Memory Controller

| Resp Queue | |«» Buffer | . I
X 2
CPU/GPU/
Accelerator v E 1
| Write Queue "
| Read Queue i
Address mapping rule: Proposed Enhanced algorithm

#Row-Rank-Bank-Column

ITwo major changes in the DRAM Controller to support the per-bank
refresh

— Command Scheduler
— Address Translator
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DRAMA — Command Scheduler

Conventional i* ------------------------------------------------------------------------------- »

Bank #0 MMM
Bank #1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ IOs,IIr;]$

max_threshold

Proposed w———t— —————————————————— A EEEEEEEEEEE LD »

Bank #0 c 5
Bank #1 — m IOEO,O,O,O, i e

v v

) Define 2 time thresholds N\ Bank/Per-Bank Refresh overhead
— tmin. threshold = trecpp (TiMe refresh per-bank) pank RDWR overhead
— tmax_threshoid= trer/8 (Refresh Interval / number of bank)
I Strategy
— Lock a refreshing bank until t.i, ihreshoid IS €Xpired

— Access non-locked banks during t,,.. wresnolq — Refresh overhead is hidden .
— 21



DRAMA Memory Controller
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Address mapping rule: Proposed Enhanced algorithm

#Row-Rank-Bank-Column

ITwo major changes in the DRAM Controller to support the per-bank
refresh

— Command Scheduler
— Address Translator
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Fetching DNN’s Data from DRAM
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! Layer-by-layer computation
— The output data of a certain layer become the input data of the following layer
— Sequential DRAM Accesses are dominant
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Our Address Translator
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a. Conventional address translator

Refresh window(tgeg)
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! Scheduling to consider the sequential .

data access b. Our proposed address translator
 Conventional: Forced switch bank
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Validation - Setup
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! The working temperature is less than 60°C in the data-center (**)
— Inject 103~10"7 BER to weights, activations, gradients and biasings during forward/backward phase

! We find the safe-BER threshold to hardly affect the training accuracy

— Extract the maximum refreshing time during training by using the extracted empirical BER model from DDR4
(**)Donghyuk Lee, Adaptive—latency DRAM: Optimizing DRAM timing for the common—case. HPCA 2015
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Validation — Training process
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! Safe BER-training threshold
— 10°FP32/BF16
— 10“4FP16
! & Maximum refreshing time during training:

— 10sec @ 60°C
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I LeNet+VGG16 simulation on GEM5

with different size of DRAM

— DRAM energy reduces 16%

— Performance improves 10.4%



Summary

! Our DRAMA can:
— Improve both performance and energy reduction for Deep Training
 Deliver a near optimal performance improvement and energy reduction in DNN training
— Provide system level approaches with minimal modifications in the physical DRAM chip
* Fully comply with the JEDEC standard

— Address translator and command scheduler ensure the command scheduling constraints
are met while enabling per-bank refresh.
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