DRAMA: An Approximate DRAM Architecture for High-performance and Energy-efficient Deep Training System

Duy-Thanh Nguyen¹, Chang-Hong Min¹, Nhut-Minh Ho², Ik-Joon Chang¹

¹Kyung Hee University, Republic of Korea

²National University of Singapore, Singapore

Short Bio

- Name: Duy-Thanh Nguyen (Ph.D Student)
- Affiliation: Kyung Hee University Republic of Korea
- Research fields:
 - Approximate computing,
 - Energy-efficient computer architecture,
 - Reliable Memory Systems.

Outline

Motivation

- The important of Significant-Bit Protection in DNNs
- The Effect of DRAM Refresh Relaxation

Key Observations

- Floating-point under Retention Errors
- Large Sensitivity to Bit-errors of Some Exponent Bits

Our Approach:

- Energy saving: Leverage refresh/non-refresh DRAM chips
- Performance improvement: Hide DRAM Refresh overhead in DNN application
- Validation
- Energy and Performance Simulation Results
- Conclusion

Motivation – MSBs of DNN's data are easily to get hurt

- DNNs become deeper and wider
 - The size of DNN Parameters tends to be larger
 - DRAM size should be larger
 - DRAM power would be more significant in data-center
- Large processing time for the training of DNNs
 - Training speed needs to be improved

- Floating-points are still required for maintaining the DNN-training accuracy
 - -> Most significant bits are extremely sensitive to errors (St-DRC@DAC'2019)

Motivation – DRAM refresh need to be eliminated

- DRAM refresh consumes up-to 47% DRAM energy *
 - -> DRAM refresh power is very significant
- DRAM refresh take up-to 46% DRAM performance*
 - -> The refresh overhead needs to be reduced, improving the system performance

SOTA works on DRAM Refresh Relaxation of DNN

	Approx.DRAM @ISCAS18	St-DRC @DAC19	PCM @DATE20
DRAM Power Saving Rate	15%	23%	22%
System Performance Improvement Rate	-10%	0.12~4%	-5%
Application	DNNs	DNNs	DNNs
Precise/Approximate	Approximate	Approximate	Approximate
Challenge	Change the cache design. The huge overhead for multiple row accesses	ECC overhead to protect the significant-bits	Change the cache design. The huge overhead for multiple row accesses

> Our Contribution: Negligible accuracy degradation in DNN in spite of some retention errors, Reasonable verification effort, Significant power saving, System performance improvement

Floating point IEEE 754 under Retention Errors

■ Conversion {s,e,m} \rightarrow {-1^s x M x 2^(e-Bias) | Bias = 127 for FP32/BF16 or 15 for FP16, M = 1.m}

Large Sensitivity to Bit-errors of Some Exponent Bits (Inference)

- Exponent bits are extremely sensitive to the error
- Our approaches:
 - No refresh for less-critical LSB's of DNN data
 - Reduce DRAM energy in DNN Training
 - Critical MSB's of DNN are normally refreshed, but hiding the performance overhead due to the refresh
 - •Improve system performance in DNN Training

Our Approach: Data Mapping for Energy saving in DNNs

Place the important bits in Normally refresh DRAM chips

Our Approach: Performance improvement in DNN-training

To improve the performance → Hide the refresh overhead for the normally refreshed DRAM chips
 Per-bank refresh command is used.

Some Constraints for Per-bank refresh

b. LPDDR4 state diagram

- a. Paralellizing bank restriction
- We put some constraints to prevent possible hazards due to per-bank refreshes
 - Constraint-1: A bank under the per-bank refresh operation cannot be activated or accessed.
 - Constraint-2: When a certain bank is under the per-bank refresh operation, another activated bank can be accessed. However, except the per-bank refresh operations, other operations cannot be paralleled.

DRAMA Memory Controller

- Two major changes in the DRAM Controller to support the per-bank refresh
 - Command Scheduler
 - Address Translator

DRAMA – Command Scheduler

- Define 2 time thresholds
 - t_{min_threshold} = t_{RFCpb} (Time refresh per-bank)
 - t_{max_threshold}= t_{REFI}/8 (Refresh Interval / number of bank)
- Strategy
 - Lock a refreshing bank until t_{min_threshold} is expired
 - Access non-locked banks during $t_{max~threshold} \rightarrow Refresh overhead is hidden$

DRAMA Memory Controller

- Two major changes in the DRAM Controller to support the per-bank refresh
 - Command Scheduler
 - Address Translator

Fetching DNN's Data from DRAM

Layer-by-layer computation

- The output data of a certain layer become the input data of the following layer
- Sequential DRAM Accesses are dominant

Our Address Translator

- 2 Major changes in DRAM Controller
 - -Command Scheduler
 - Address Translator

a. Conventional address translator

- data access
 - Conventional:
 - •#Row-Rank-Bank-Column
 - Our proposed scheme:
 - •#Row-Rank-Column[9:7]-Bank-Column[6:0]

b. Our proposed address translator

Refresh window(t_{REFI})

Validation - Setup

- The working temperature is less than 60°C in the data-center (**)
 - Inject 10⁻³~10⁻⁷ BER to weights, activations, gradients and biasings during forward/backward phase
- We find the safe-BER threshold to hardly affect the training accuracy
 - Extract the maximum refreshing time during training by using the extracted empirical BER model from DDR4

Validation – Training process

- Safe BER-training threshold
 - 10⁻⁶ FP32/BF16
 - 10⁻⁴ FP16
- → Maximum refreshing time during training:
 - 10sec @ 60°C

Energy and Performance Simulation Results

- LeNet+VGG16 simulation on GEM5 with different size of DRAM
 - DRAM energy reduces 16%
 - Performance improves 10.4%

Summary

Our DRAMA can:

- Improve both performance and energy reduction for Deep Training
 - Deliver a near optimal performance improvement and energy reduction in DNN training
- Provide system level approaches with minimal modifications in the physical DRAM chip
 - Fully comply with the JEDEC standard
- Address translator and command scheduler ensure the command scheduling constraints are met while enabling per-bank refresh.

Acknowledgment & Thank you

- This research was supported by
 - -National R&D Program through the National Research Foundation of Korea(NRF) funded by Ministry of Science and ICT (2020M3F3A2A01085755).
 - –Ministry of Trade, Industry and Energy through the Korea Semiconductor Research Consortium support program for the development of the future semiconductor device under Grant 10080594.

Any question?