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Motivation – MSBs of DNN’s data are easily to get hurt

DNNs become deeper and wider

– The size of DNN Parameters tends to be larger

– DRAM size should be larger 

– DRAM power would be more significant

in data-center

Large processing time for the training of DNNs

– Training speed needs to be improved  

Floating-points are still required for maintaining the DNN-training accuracy

–> Most significant bits are extremely sensitive to errors (St-DRC@DAC’2019) 

4 / 21 



Motivation – DRAM refresh need to be eliminated

DRAM refresh consumes up-to 47% DRAM energy *

–> DRAM refresh power is very significant

DRAM refresh take up-to 46% DRAM performance*
–> The refresh overhead needs to be reduced,  improving the system performance

*Malcolm @HPCA’2010/Lefurgy@TCOM’2003/Ghose@SIGMETRIC’2018
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@ISCA2012

RAIDR
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SOTA works on DRAM Refresh Relaxation of DNN

Approx.DRAM

@ISCAS18

St-DRC

@DAC19

PCM

@DATE20

DRAM Power Saving 

Rate
15% 23% 22%

System Performance 

Improvement Rate
-10% 0.12~4% -5%

Application DNNs DNNs DNNs

Precise/Approximate Approximate Approximate Approximate

Challenge

Change the cache 

design. The huge 

overhead for 

multiple row 

accesses

ECC overhead to

protect the 

significant-bits

Change the cache 

design. The huge 

overhead for multiple 

row accesses

 Our Contribution: Negligible accuracy degradation in DNN in spite of some retention errors, 
Reasonable verification effort, Significant power saving, System performance improvement
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Floating point IEEE 754 under Retention Errors

Error propagation due to +/- Infinity and NaN → Catastrophic system errors

Single Precision (FP32)

Half Precision (FP16)

s

[Sign]

e

[Exponent]
m

[Mantissa]

8-bit

5-bit

23-bit

10-bit

A
L

U NaN

(Not-A-Number)
Operand2

Operand1

±Infinity/NaN

Conversion {s,e,m}  → {-1sⅹMⅹ2(e-Bias) | Bias = 127 for FP32/BF16 or 15 for FP16, M = 1.m}

1 1 1 1 1 1 1 1

When all 1’s are in the exponent, 

the data will become ±Infinity/NaN

Significant Challenge Due to Retention Errors

Brain Float (BF16) 8-bit 7-bit
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Large Sensitivity to Bit-errors of Some Exponent Bits (Inference)

Exponent bits are extremely sensitive to the error

Our approaches:

– No refresh for less-critical LSB’s of DNN data

• Reduce DRAM energy in DNN Training

– Critical MSB’s of DNN are normally refreshed, but hiding the performance overhead due to the refresh

•Improve system performance in DNN Training

Original Kernel
50 times Error Accumulation
(8 MSB: No Errors, Others: 10-5 BER)

50 times Error Accumulation
(All Bits: 10-5 BER)
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Our Approach: Data Mapping for Energy saving in DNNs

Place the important bits in Normally refresh DRAM chips
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Our Approach: Performance improvement in DNN-training

To improve the performance  Hide the refresh overhead for the normally refreshed DRAM chips

–Per-bank refresh command is used.

Conventional

Proposed
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Some Constraints for Per-bank refresh

We put some constraints to prevent possible hazards due to per-bank refreshes 

– Constraint-1: A bank under the per-bank refresh operation cannot be activated or accessed.

– Constraint-2: When a certain bank is under the per-bank refresh operation, another activated bank can 

be accessed. However, except the per-bank refresh operations, other operations cannot be paralleled. 
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DRAMA Memory Controller

Two major changes in the DRAM Controller to support the per-bank 
refresh

– Command Scheduler

– Address Translator
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DRAMA – Command Scheduler

Define 2 time thresholds

– tmin_threshold = tRFCpb (Time refresh per-bank)

– tmax_threshold= tREFI/8 (Refresh Interval / number of bank)

Strategy

– Lock a refreshing bank until tmin_threshold is expired

– Access non-locked banks during tmax_threshold → Refresh overhead is hidden

Bank #0

Bank #1

tmin_threshold

tmax_threshold

Bank/Per-Bank Refresh overhead

Bank RD/WR overhead

❶ ❷

Bank #0

Bank #1

tREFI

Conventional

Proposed
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DRAMA Memory Controller

Two major changes in the DRAM Controller to support the per-bank 
refresh

– Command Scheduler

– Address Translator
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Fetching DNN’s Data from DRAM
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Layer-by-layer computation

– The output data of a certain layer become the input data of the following layer

– Sequential DRAM Accesses are dominant

Vivienne Sze et al. 2019
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Our Address Translator

Scheduling to consider the sequential 

data access

• Conventional: 

•#Row-Rank-Bank-Column

• Our proposed scheme: 

•#Row-Rank-Column[9:7]-Bank-Column[6:0]

2 Major changes in DRAM Controller

–Command Scheduler

–Address Translator
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Validation - Setup

The working temperature is less than 60oC in the data-center (**)

– Inject 10-3~10-7 BER to weights, activations, gradients and biasings during forward/backward phase 

We find the safe-BER threshold to hardly affect the training accuracy

– Extract the maximum refreshing time during training by using the extracted empirical BER model from DDR4
(**)Donghyuk Lee, Adaptive-latency DRAM: Optimizing DRAM timing for the common-case. HPCA 2015
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Validation – Training process
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Safe BER-training threshold

– 10-6 FP32/BF16

– 10-4 FP16

 Maximum refreshing time during training:

– 10sec @ 60oC
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Energy and Performance Simulation Results

LeNet+VGG16 simulation on GEM5

with different size of DRAM

– DRAM energy reduces 16%

– Performance improves 10.4% 0.99
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Summary

Our DRAMA can:

– Improve both performance and energy reduction for Deep Training

• Deliver a near optimal performance improvement and energy reduction in DNN training 

– Provide system level approaches with minimal modifications in the physical DRAM chip 

• Fully comply with the JEDEC standard

– Address translator and command scheduler ensure the command scheduling constraints 

are met while enabling per-bank refresh.
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